
Radix vs. Comparison Sorting
Lecture 36 (Sorting 6)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Lecture 36, CS61B, Spring 2024

Radix Sort vs. Comparison Sort
• Intuitive Analysis
• Cost Model Analysis
• Empirical Study
• Rerunning Empirical Study

without JIT Compiler
Radix Sorting Integers
Sorting Summary

Radix Sort vs.
Comparison Sort:
Intuitive Analysis

Merge Sort Runtime

Merge Sort requires Θ(N log N) compares.

What is Merge Sort’s runtime on strings of length W?

Merge Sort Runtime

Merge Sort requires Θ(N log N) compares.

What is Merge Sort’s runtime on strings of length W?
● It depends!

○ Θ(N log N) if each comparison takes constant time.
■ Example: Strings are all different in top character.

○ Θ(WN log N) if each comparison takes Θ(W) time.
■ Example: Strings are all equal.

LSD vs. Merge Sort

The facts.
● Treating alphabet size as constant, LSD Sort has runtime Θ(WN).
● Merge Sort has runtime between Θ(N log N) and Θ(WN log N).

Which is better? It depends.
● When might LSD sort be faster?
● When might Merge Sort be faster?

LSD vs. Merge Sort (Your Answer)

The facts:
● Treating alphabet size as constant, LSD Sort has runtime Θ(WN).
● Merge Sort has runtime between Θ(N log N) and Θ(WN log N).

Which is better? It depends.
● When might LSD sort be faster?
● When might Merge Sort be faster?

LSD vs. Merge Sort (My Answer)

The facts:
● Treating alphabet size as constant, LSD Sort has runtime Θ(WN).
● Merge Sort is between Θ(N log N) and Θ(WN log N).

Which is better? It depends.
● When might LSD sort be faster?

○ Sufficiently large N.
○ If strings are very similar to each other.

■ Each Merge Sort comparison costs Θ(W) time.
● When might Merge Sort be faster?

○ If strings are highly dissimilar from each other.
■ Each Merge Sort comparison is very fast.

IUYQWLKJASHLEIUHAD...

LIUHLIUHRGLIUEHWEF...

OZIUHIOHLHLZIEIUHF...

...

AAAAAAAAAAAAA…….AB

AAAAAAAAAAAAA…….AA

AAAAAAAAAAAAA…….AQ

...

Lecture 36, CS61B, Spring 2024

Radix Sort vs. Comparison Sort
• Intuitive Analysis
• Cost Model Analysis
• Empirical Study
• Rerunning Empirical Study

without JIT Compiler
Radix Sorting Integers
Sorting Summary

Cost Model
Analysis

Alternate Approach: Picking a Cost Model

An alternate approach is to pick a cost model.
● We’ll use number of characters examined.
● By “examined”, we mean:

○ Radix Sort: Calling charAt in order to count occurrences of each
character.

○ Merge Sort: Calling charAt in order to compare two Strings.

MSD vs. Mergesort

Suppose we have 100 strings of 1000 characters each.
● Estimate the total number of characters examined by MSD Radix Sort if all

strings are equal.

MSD vs. Mergesort

Suppose we have 100 strings of 1000 characters each.
● Estimate the total number of characters examined by MSD Radix Sort if all

strings are equal.

For MSD Radix Sort, in the worst case (all strings equal), every character is
examined exactly once. Thus, we have exactly 100,000 total character
examinations.

● AAAAAA
● AAAAAA
● AAAAAA

MSD vs. Mergesort

Suppose we want to perform a merge of two arrays of size 50, where each entry is
a length 1000 string.
● How many character examinations are needed to complete the merge

operation if all strings are equal?

If that is too daunting:
● How many character examinations are needed to decide which of two 1000

character strings are “smaller”? (i.e. how many examinations per compareTo)

AAA...AA AAA...AA AAA...AA ... AAA...AA AAA...AA AAA...AA

Left half Right half

0 1 2 97 98 99

i=0 j=50

MSD vs. Mergesort

Merging 100 items, assuming equal items results in always picking left:
● Comparing A[0] to A[50]: 2000 character examinations.

AAA...AA AAA...AA AAA...AA ... AAA...AA AAA...AA AAA...AA

Left half Right half

0 1 2 97 98 99

i=0 j=50

MSD vs. Mergesort

Merging 100 items, assuming equal items results in always picking left:
● Comparing A[0] to A[50]: 2000 character examinations.
● Comparing A[1] to A[50]: 2000 character examinations.

AAA...AA AAA...AA AAA...AA ... AAA...AA AAA...AA AAA...AA

Left half Right half

0 1 2 97 98 99

i=1 j=50

MSD vs. Mergesort

Merging 100 items, assuming equal items results in always picking left:
● Comparing A[0] to A[50]: 2000 character examinations.
● Comparing A[1] to A[50]: 2000 character examinations.
● … Comparing A[49] to A[50]: 2000 character examinations.
● Total characters examined: 50 * 2000 = 100000.

AAA...AA AAA...AA AAA...AA ... AAA...AA AAA...AA AAA...AA

Left half Right half

0 1 2 97 98 99

i=49 j=50

N/2 * 2000 = 1000N

MSD vs. Mergesort

Suppose we have 100 strings of 1000 characters each.
● Estimate the total number of characters examined by Merge Sort if all strings

are equal.
● From previous slide: Merging N strings of 1000 characters requires

N/2 * 2000 = 1000N examinations.
○ That is, final merge requires 100,000 examinations.
○ Two merges below that require 50,000 examinations each.

MSD vs. Mergesort

Suppose we have 100 strings of 1000 characters each.
● Estimate the total number of characters examined by Merge Sort if all strings

are equal.
● From previous slide: Merging N strings of 1000 characters requires

N/2 * 2000 = 1000N examinations.

In total, we must examine approximately 1000N log2 N total characters.
● 100000 + 50000*2 + 25000 * 4 + … = ~660,000 characters.

merge(100): 100000

merge(50): 50000 merge(50): 50000

merge(25): 25000 merge(25): 25000 merge(25): 25000 merge(25): 25000

MSD vs. Mergesort Character Examinations

For N equal strings of length 1000, we found that:
● MSD radix sort will examine ~1000N characters (For N= 100: 100,000).
● Merge sort will examine ~1000Nlog2(N) characters (For N=100: 660,000).

If character examination are an appropriate cost model, we’d expect Merge Sort to
be slower by a factor of log2N.

To see if we’re right, we’ll need to do a computational experiment.
● Let’s pop into IntelliJ.

Lecture 36, CS61B, Spring 2024

Radix Sort vs. Comparison Sort
• Intuitive Analysis
• Cost Model Analysis
• Empirical Study
• Rerunning Empirical Study

without JIT Compiler
Radix Sorting Integers
Sorting SummaryEmpirical Study

Computational Experiment Results

Computational experiment for W = 100.
● MSD and merge sort implementations are highly optimized versions taken

from our optional algorithms textbook.
● Does our data match our runtime hypothesis?

N Runtime # chars

10,000 0.05 13,801,600

100,000 0.26 170,780,800

1,000,000 1.1 2,013,286,400

10,000,000 15.32 23,757,632,000

N Runtime # chars

10,000 0.04 1,000,000

100,000 0.25 10,000,000

1,000,000 8.68 100,000,000

10,000,000 53.39 1,000,000,000

Merge MSD

As we expected, Merge sort considers log2N times as
many characters, e.g. log2(10,000,000) = 23.25

https://algs4.cs.princeton.edu/51radix/MSD.java.html
https://algs4.cs.princeton.edu/22mergesort/MergeX.java.html

Computational Experiment Results

Computational experiment for W = 100.
● MSD and merge sort implementations are highly optimized versions taken

from our optional algorithms textbook.
● Does our data match our runtime hypothesis? No!

○ Any guesses as to why not?

N Runtime # chars

10,000 0.05 13,801,600

100,000 0.26 170,780,800

1,000,000 1.1 2,013,286,400

10,000,000 15.32 23,757,632,000

N Runtime # chars

10,000 0.04 1,000,000

100,000 0.25 10,000,000

1,000,000 8.68 100,000,000

10,000,000 53.39 1,000,000,000

Merge MSD

https://algs4.cs.princeton.edu/51radix/MSD.java.html
https://algs4.cs.princeton.edu/22mergesort/MergeX.java.html

Computational Experiment Results (My Answers)

Computational experiment for W = 100.
● MSD and merge sort implementations are highly optimized versions taken

from our optional algorithms textbook.
● Does our data match our runtime hypothesis? No! Why not?

○ Our cost model isn’t representative of everything that is happening.
○ One particularly thorny issue: The “Just In Time” Compiler.

N Runtime # chars

10,000 0.05 13,801,600

100,000 0.26 170,780,800

1,000,000 1.1 2,013,286,400

10,000,000 15.32 23,757,632,000

N Runtime # chars

10,000 0.04 1,000,000

100,000 0.25 10,000,000

1,000,000 8.68 100,000,000

10,000,000 53.39 1,000,000,000

Merge MSD

https://algs4.cs.princeton.edu/51radix/MSD.java.html
https://algs4.cs.princeton.edu/22mergesort/MergeX.java.html

An Unexpected Factor: The Just-In-Time Compiler

Java’s Just-In-Time Compiler secretly optimizes your code when it runs.
● The code you write is not necessarily the code that executes!
● As your code runs, the “interpreter” is watching everything that happens.

○ If some segment of code is called many times, the interpreter actually
studies and re-implements your code based on what it learned by
watching WHILE ITS RUNNING (!!).
■ Example: Performing calculations whose results are unused.
■ See this video if you’re curious.

Hello.java Hello.classjavac java
stuff
happens

Compiler Interpreter

https://www.youtube.com/watch?v=oH4_unx8eJQ

JIT Example

The code below creates Linked Lists, 1000 at a time.
● Repeating this 500 times yields an interesting result.

public class JITDemo1 {
 static final int NUM_LISTS = 1000;

 public static void main(String[] args) {
 for (int i = 0; i < 500; i += 1) {
 long startTime = System.nanoTime();
 for (int j = 0; j < NUM_LISTS; j += 1) {
 LinkedList<Integer> L = new LinkedList<>();
 }
 long endTime = System.nanoTime();
 System.out.println(i + “: “ + endTime - startTime);
 }
 }
}

Create 1000
linked lists and
print total time it
takes.

JIT Example

The code below creates Linked Lists, 1000 at a time.
● Repeating this 500 times yields an interesting result.
● First optimization: Not sure what it does.
● Second optimization: Stops creating linked lists since we’re not actually using

them.

Warmup

Optimization 1

Optimization 2

Lecture 36, CS61B, Spring 2024

Radix Sort vs. Comparison Sort
• Intuitive Analysis
• Cost Model Analysis
• Empirical Study
• Rerunning Empirical Study

without JIT Compiler
Radix Sorting Integers
Sorting Summary

Rerunning
Empirical Study
without JIT
Compiler

Computational Experiments Results

Results with JIT disabled (using the -Xint option).

N Runtime # chars

1,000

10,000

100,000

N Runtime # chars

1,000

10,000

100,000

Merge MSD

Computational Experiments Results

Results with JIT disabled (using the -Xint option).
● Both sorts are MUCH MUCH slower than before.
● Merge sort is slower than MSD (though not by as much as we predicted).
● What this tells us: The JIT was somehow able to massively optimize the

compareTo calls.
○ Makes some intuitive sense: Comparing “AAA...A” to “AAA...A” over and

over is redundant. I have no idea what it did specifically.

N Runtime # chars

1,000 0.11 1,000,800

10,000 1.51 13,801,600

100,000 20.76 170,780,800

N Runtime # chars

1,000 0.05 100,000

10,000 0.48 1,000,000

100,000 7.28 10,000,000

Merge MSD

… So Which is Better? MSD or MergeSort?

We showed that if the JIT is enabled, merge sort is much faster for the case of
equal strings, and slower if JIT is disabled.
● Since JIT is usually on, I’d say merge sort is better for this case.

Many other possible cases to consider:
● Almost equal strings (maybe the trick used by the JIT won’t work?).
● Randomized strings.
● Real world data from some dataset of interest.

See code in lectureCode repo if you want to try running experiments yourself.
● In real world applications, you’d profile different implementations on real data

and pick the best one.

Bottom Line: Algorithms Can Be Hard to Compare

Comparing algorithms that have the same order of growth is challenging.
● Have to perform computational experiments.
● In modern programming environments, experiments can be tricky due to

optimizations like the JIT in Java.

Note: There’s always the chance that some small optimization to an algorithm can
make it significantly faster.
● Example: Change to Quicksort suggested by Vladimir Yaroslavskiy that we

mentioned briefly in the quicksort lecture.

JIT Compilers Are Always Evolving

The JIT is a fantastically complex and important piece of code.
● Active area of research and development in the field of compilers.
● The old JIT compiler called C2 is so complicated that its code base is AFAIK

being abandoned: “However, C2 has been delivering diminishing returns in
recent years and no major improvements have been implemented in the
compiler in the last several years. Not only that, but the code in C2 has
become very hard to maintain and extend, and it is very hard for any new
engineer to get up to speed with the codebase, which is written in a specific
dialect of C++.” (from this site)

● If you like this stuff, try taking CS164 and maybe even try to get involved in
compiler research.

● P.S. If anyone can figure out exactly what’s going on that makes merge sort so
much faster with the JIT, I’d love to know.

https://www.infoq.com/articles/Graal-Java-JIT-Compiler

Lecture 36, CS61B, Spring 2024

Radix Sort vs. Comparison Sort
• Intuitive Analysis
• Cost Model Analysis
• Empirical Study
• Rerunning Empirical Study

without JIT Compiler
Radix Sorting Integers
Sorting Summary

Radix Sorting
Integers

Sorting Integers

Wow videos looked like trash in 2007.

http://www.youtube.com/watch?v=k4RRi_ntQc8

Linear Time Sorting

As we’ve seen, estimating radix sort vs. comparison sort performance is very hard.
● But in the very large N limit, it’s easy. Radix sort is simply faster!

○ Treating alphabet size as constant, LSD Sort has runtime Θ(WN).
○ Comparison sorts have runtime Θ(N log N) in the worst case.

Linear Time Sorting

As we’ve seen, estimating radix sort vs. comparison sort performance is very hard.
● But in the very large N limit, it’s easy. Radix sort is simply faster!

○ Treating alphabet size as constant, LSD Sort has runtime Θ(WN).
○ Comparison sorts have runtime Θ(N log N) in the worst case.

Issue: We don’t have a charAt method for integers.
● How would you LSD radix sort an array of integers?

Linear Time Sorting (My Answer)

As we’ve seen, estimating radix sort vs. comparison sort performance is very hard.
● But in the very large N limit, it’s easy. Radix sort is simply faster!

○ Treating alphabet size as constant, LSD Sort has runtime Θ(WN).
○ Comparison sorts have runtime Θ(N log N) in the worst case.

Issue: We don’t have a charAt method for integers.
● How would you LSD radix sort an array of integers?

○ Could convert into a String and treat as a base 10 number. Since
maximum Java int is 2,000,000,000, W is also 10.

○ Could modify LSD radix sort to work natively on integers.
■ Instead of using charAt, maybe write a helper method like

getDthDigit(int N, int d). Example: getDthDigit(15009, 2) = 5.

LSD Radix Sort on Integers

Note: There’s no reason to stick with base 10!
● Could instead treat as a base 16, base 256, base 65536 number.

Example: 512,312 in base 16 is a 5 digit number:

● 51231210 = (7 x 164) + (13 x 163) + (1 x 162) + (3 x 161) + (8
x 160)

Example: 512,312 in base 256 is a 3 digit number:

● 51231210 = (7 x 2562) + (209 x 2561) + (56 x 2560)

Note this digit is greater than 9! That’s
OK, because we’re in base 16.

Note these digit are greater than 9! That’s
OK, because we’re in base 256.

For Java integers:
● R=10, treat as a base 10 number. Up to 10 digits.
● R=16, treat as a base 16 number. Up to 8 digits.
● R=256, treat as a base 256 number. Up to 4 digits.
● R=65336, treat as a base 65536 number. Up to 2 digits.
● R=2147483647, treat as a base 2147483647 number (this is equivalent to

counting sort). Has exactly 1 digit.

Interesting fact: Runtime depends on the alphabet size.
● As we saw with city sorting last time, R = 2147483647 will result in a very

slow radix sort (since it’s just counting sort).

Relationship Between Base and Max # Digits

Another Computational Experiment

Results of a computational experiment:
● Treating as a base 256 number (4 digits), LSD radix sorting integers easily

defeats Quicksort.

Sort Base # of Digits Runtime

Java QuickSort N/A N/A 10.9 seconds

LSD Radix Sort 2^4 = 16 8 3.6 seconds

LSD Radix Sort 2^8 = 256 4 2.28 seconds

LSD Radix Sort 2^16 = 65536 2 3.66 seconds

LSD Radix Sort 2^30 = 1073741824 2 20 seconds

Sorting 100,000,000 integers

Lecture 36, CS61B, Spring 2024

Radix Sort vs. Comparison Sort
• Intuitive Analysis
• Cost Model Analysis
• Empirical Study
• Rerunning Empirical Study

without JIT Compiler
Radix Sorting Integers
Sorting SummarySorting Summary

Counting

Small-Alphabet (e.g. Integer) Sorting Algorithms:

Comparison Based Sorting Algorithms:

Selection

Insertion

Merge

Partition

If insert into BST, equiv. to

If heapify first Heapsort

LSD

MSD
Counting

Radix Sorting Algorithms:
(require a sorting subroutine)

Sorting Landscape

Below, we see the landscape of the sorting algorithms we’ve studied.
● Three basic flavors: Comparison, Alphabet, and Radix based.
● Each can be useful in different circumstances, but the important part was the

analysis and the deep thought!
○ Hoping to teach you how to approach problems in general.

Sorting vs. Searching

We’ve now concluded our study of the “sort problem.”
● During the data structures part of the class, we studied what we called the

“search problem”: Retrieve data of interest.
● There are some interesting connections between the two.

Name Storage Operation(s) Primary Retrieval Operation Retrieve By:

List add(key)
insert(key, index)

get(index) index

Map put(key, value) get(key) key identity

Set add(key) containsKey(key) key identity

PQ add(key) getSmallest() key order (a.k.a. key size)

Disjoint Sets connect(int1, int2) isConnected(int1, int2) two int values

Partial list of search problem data structures.

Search-By-Key-Identity Data Structures:

Set

2-3 Tree

RedBlack

Separate ChainingMap

Searches using compareTo()
Analogous to Comparison-Based

Searches using hashCode() and equals()
Roughly Analogous to Integer Sorting

Counting

Small-Alphabet (e.g. Integer) Sorting Algorithms:

Comparison Based Sorting Algorithms:

Selection

Insertion

Merge

Partition

If insert into BST, equiv. to

If heapify first Heapsort

LSD

MSD
Counting

Radix Sorting Algorithms:
(require a sorting subroutine)

Tries Searches digit-by-digit
Roughly Analogous to Radix Sorting

Going Even Further

There’s plenty more to explore!

Many of these ideas can be mixed and matched with others. Examples:
● What if we use quicksort as a subroutine for MSD radix sort instead of

counting sort?
● Implementing the comparable interface means an object can be stored in our

compareTo-based data structures (e.g. TreeSet), or sorted with our
comparison based sorts. Is there a single equivalent interface that would
allow storage in a trie AND radix sorting? What would that interface look like?

● If an object has both digits AND is comparable, could we somehow use an
LLRB to improve radix sort in some way?

